高级搜索:
行业动态
您当前的位置:首页 » 新闻动态 » 行业动态  » 传统检测算法

传统检测算法

来源: 时间:2020-01-13 11:26:15 次数:

在2001年,一篇基于Haar+Adaboost的检测方法在学术界和工业界引起了非常大的轰动,它第一次把检测做到实时,并且在当时的技术限制下,检测性能也做的非常亮眼。纵观2012年之前的物体检测算法,可以归结为三个方面的持续优化:
传统检测算法

在2001年,一篇基于Haar+Adaboost的检测方法在学术界和工业界引起了非常大的轰动,它第一次把检测做到实时,并且在当时的技术限制下,检测性能也做的非常亮眼。纵观2012年之前的物体检测算法,可以归结为三个方面的持续优化:

检测窗口的选择

拿人脸检测举例,当给出一张图片时,我们需要框出人脸的位置以及人脸的大小,那么最简单的方法就是暴力搜索候选框,把图像中所有可能出现框的位置从左往右、从上往下遍历一次。并且通过缩放一组图片尺寸,得到图像金字塔来进行多尺度搜索。但是这种方法往往计算量很大并且效率不高,在实际应用中并不可取。人脸具有很强的先验知识,比如人脸肤色YCbCr空间呈现很紧凑的高斯分布,通过肤色检测可以去除很大一部分候选区域,仅留下极小部分的区域作为人脸检测搜索范围。由于肤色的提取非常快,只是利用一些颜色分布的信息,把每个像素判断一下,整体速度提升很多。但肤色提取只是用到简单的颜色先验,如果遇到和肤色很像的,比如黄色的桌子,很有可能被误判成人脸的候选检测区域。进一步提高精度衍生出如SelectiveSearch或EdgeBox等proposal提取的方法,基于颜色聚类、边缘聚类的方法来快速把不是所需物体的区域给去除,相对于肤色提取精度更高,极大地减少了后续特征提取和分类计算的时间消耗。

特征的设计

在传统的检测中,Haar由于提取速度快,能够表达物体多种边缘变化信息,并且可以利用积分图快速计算,得到广泛的应用;LBP更多的表达物体的纹理信息,对均匀变化的光照有很好的地适应性;HOG通过对物体边缘使用直方图统计来进行编码,特征表达能力更强,在物体检测、跟踪、识别都有广泛的应用。传统特征设计往往需要研究人员经验驱动,更新周期往往较长,通过对不同的特征进行组合调优,从不同维度描述物体可以进一步提升检测精度,如ACF检测,组合了20种不同的特征表达。

分类器的设计

传统的分类器包含Adaboost、SVM、DecisionTree等。

Adaboost

一个弱分类器往往判断精度不高,通过Adaboost自适应地挑选分类精度高的弱分类器并将它们加权起来,从而提升检测性能。比如说,人脸检测中一个候选窗口需要判断是否为人脸,其中一些弱分类器为颜色直方图分量(如红黄蓝三种颜色),如果黄色分量大于100,那我就认为这块可能是人脸的候选区域,这就是个非常简单的弱分类器。可是,单个这么弱的分类器判断是很不准的,那么我们就需要引入另外一些分量做辅助。比如再引入红色分量大于150,将几个条件叠加起来,就组成了一个比较强的分类器。

这里弱分类器的设计往往就是确定颜色判断的阈值,为什么会选择100呢?其实这是我们需要学习得到的阈值,学习得到,当阈值设定为100时,分类的精度是最高的。另外,为什么要选择红黄蓝三种颜色?同样,因为它们分类的精度更高。通过不断进行特征挑选并学习弱分类器,最终组合提升为Adaboost强分类器。

SVM分类器

SVM通过最大化分类间隔得到分类平面的支持向量,在线性可分的小数据集上有不错的分类精度,另外通过引入核函数将低维映射到高维,从而线性可分,在检测场景被广泛使用。比如线性SVM分类器就是一些支持向量,将物体表示为一些特征向量,实际当中学到的分类器就是一些系数向量,这些系数向量和特征向量做一个加权的话可以得到分类分数,对分数进行阈值判断,就可以判断是否是某一类。

DecisionTree

决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶子节点代表一种类别。用从树根到树叶的二叉树来举个简单例子。假如从树根进来有个二分类,我们需要区分它是人脸或者是非人脸,左边是非人脸,右边是人脸。当我进入第一个二叉树分类器节点判断,如果是非人脸的话直接输出结果,如果是人脸候选的话进入下一层再做进一步的分类。通过学习每个节点的分类器来构造决策树,最终形成一个强分类器。

RandomForest

通过对决策树进行Ensemble,组合成随机森林更好的提高分类或者回归精度。假设刚刚提到的决策树是一棵树,那么现在我想学十棵树,每个树采用不同的输入或者分类准则,从不同维度来做分类。以十棵树的分类结果进行投票,8个树认为这个框是人脸,2个认为是非人脸,最终输出为人脸。投票策略可以更好地降低分类误差,在实际场景中得到广泛应用。
关键字: 
版权所有©2020 宁波慧声智创科技有限公司 All Rights Reserved