高级搜索:
行业动态
从传统方法到深度学习

来源: 时间:2020-01-13 11:26:42 次数:

众所周知,检测算法的演变分为两个阶段,一个就是基于传统特征的解决方法,另外一个就是深度学习算法。在2013年之前传统方法还算是主流,大家都是基于传统的feature优化检测方法。然而,在2013年之后,,整个学术界和工业界都逐渐利用深度学习来做检测。
从传统方法到深度学习

众所周知,检测算法的演变分为两个阶段,一个就是基于传统特征的解决方法,另外一个就是深度学习算法。在2013年之前传统方法还算是主流,大家都是基于传统的feature优化检测方法。然而,在2013年之后,,整个学术界和工业界都逐渐利用深度学习来做检测。

实际上,这是由于深度学习在分类上超越了很多传统的方法,在2012年的ImageNet上,Hinton两个学生就曾用ConvNet获得了冠军。与传统方法相比,深度学习在分类精度上提高很多。起先,深度学习只是在分类上有非常明显的提升,之后也带动了检测这一块。从物体分类到物体检测,利用了深度学习比较强的feature的表达能力,可以进一步提高检测的精度。

检测方面有两个比较典型的公开测试集,PASCALVOC和COCO。从这两个测试集上可以看到传统的检测方法和深度学习的检测方法在精度上的差别非常的大。传统的物体检测方法因为其特征比较弱,所以每类都需要训练一个检测器。每个检测器都是针对特定的物体训练,如果有20类的话,就需要跑20次前向预测,相当于单次检测的20倍,作为一个2C端产品,时间消耗和精度性能使得传统方法检测的应用场景不是很多。

目前最新的检测都是基于深度学习的方法,最开始的RCNN,它算是深度学习应用到检测里的鼻祖,从起初它平均49.6的精度记录,到如今已然提升了快40个点。而在传统的方法中SVM-HOG,它的精度才到了31.5,和深度学习相比低了很多。值得注意的是,传统检测方法随着数据量增大检测性能会趋于饱和,也就是说随着数据量的增大,检测性能会逐渐提高,但到了一定程度之后数据量的提高带来的性能增益非常少。而深度学习的方法则不同,当符合实际场景分布的数据越来越多时,其检测性能会越来越好。

关键字: 
版权所有©2020 宁波慧声智创科技有限公司 All Rights Reserved